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Abstract—In order to address the vast needs of disparate domains,
computing engines are becoming more sophisticated and complex. A
typical high-performance computational engine is composed of several
accelerator units, in most cases GPUs, plus one or more CPU con-
trollers. All these components are becoming increasingly interconnected
to satisfy bandwidth and latency tolerance demands from modern work-
loads. Due to these constraints, solutions to efficiently interconnect them
or to systematically manage their traffic—such as PCle v3, NVLink
vl and v2 on the hardware side, and NVIDIA Collective Communi-
cation Library (NCCL) and AMD ROCM layer on the software side—
are becoming more commonplace inside HPC systems and cloud data
centers. However, as the number of accelerators increases, workloads
(especially machine learning) might not be able to fully exploit the
computational substrate due to inefficient use of hardware intercon-
nects. Such scenarios can lead to performance bottlenecks where high-
bandwidth links are not used by the underlying libraries and under-
performing links are overused.

This work proposes Workload Optimization Through Inter-GPU Re-
routing (WOTIR), which consists of enhanced NCCL-based collective
primitives that aim to boost bandwidth utilization (through more efficient
routing) and reduce communication overhead. WOTIR targets GPUs
with no direct NVLink communication path (which leads to PCle com-
munications) and instead re-routes communication through intermediate
GPUs to bridge NVLink segments and avoid PCle communications.
Such method allows the maximum possible utilization of the NVLink
bandwidth between the GPUs without routing through the PCle bus.
Using this method, we see a reduction of up to 34% in execution
time for selected machine learning workloads when non-optimal GPU
allocations arise.

Index Terms—Collective communication, GPU, Interconnect
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1 INTRODUCTION

Accelerator-based computing has become mainstream for
many domains that have high computational needs. The
most common accelerator architecture used in current sys-
tems is GPU-based. The domains that best exploits this in-
creased computational power are usually HPC applications
which are highly concurrent and floating point intensive,
and Machine Learning (ML) workloads that require a large
number of small computations and efficient communication.
Moreover, these workloads continue to evolve to efficiently
map to the ever-changing computational substrate.

Such computational pipelines have been augmented to
take advantage of optimized collective operations provided
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for the hardware. Vendor-provided solutions such as the
NVIDIA Collective Communications Library (NCCL) [1] exploit
the system under “normal” conditions. However, due to
complexities that arise from advanced workflows, frame-
works, and multi-user environments, these solutions fail to
fully leverage the underlying compute substrate. Domains
like machine learning training, in which the process can take
days, and graph-based analytics in cloud environments [2],
[3] can suffer from these pathological scenarios, since several
workloads might be required to co-exist inside a single
compute node. Such partitioning of resources might lead to
“bad” placements in which GPUs might become isolated’
for a single workload, leading to inefficient communication.

1.1 Multi-GPU Server Architectures

The NVIDIA DGX-1 system was one of the first multi-
GPU reference server design released. This design has been
adopted by various supercomputers and cloud data centers.
Examples include the Summit Supercomputer [4], Microsoft
Olympus [5], and Facebook Big Basin [6].

Figure 1 illustrates the GPU network topology in the
DGX-1 system. In this server, two CPUs manage 4 GPUs
through a PCle link each (i.e. 8 GPUs in total). Every GPU
has direct peer-to-peer access to 3 other GPUs through
single and double NVLink connections (NVIDIA’s high
speed GPU-to-GPU interconnect [7]) as shown. In the DGX-
1 systems (that use NVIDIA P100 GPUs), NVLink-vl can
reach up to 20 GB/s per link. Newer systems using V100s
GPUs employ NVLink-v2 which can achieve up to 25 GB/s
per link with the same network topology. In these config-
urations, the black arrows in Figure 1 signify peer-to-peer
connectivity. Two black arrows mean double NVLink con-
nections. The CUDA runtime API enables NVLink-based
device-to-device communication only if the pair of GPUs
are directly connected via NVLink [8].

1.2 Motivation - The Fragmentation Problem

To highlight potential resource allocation and communica-
tion issues in cloud environments that can arise in multi-
GPU servers, let us consider the following scenario. There
is a job queue, where queued Jobs 1 through 4 utilize 1, 4, 2
and 2 GPUs respectively. These jobs can either be batch-type
or latency-critical that are provisioned for request-response
type workloads. Let us assume a naive scheduling scenario?
where Job 1 takes GPU 0; Job 2 takes GPUs 1, 2, 3 & 4; and
Job 3 takes GPUs 5 & 6. Since there is only one GPU left,
and Job 4 needs 2 GPUs, it waits until 2 GPUs are available.
Now assume Job 1 frees GPU 0, and Job 4 is scheduled
on GPUs 0 & 7. In the GPU topology shown in Figure 2a,
GPUs 0 & 7 do not have NVLink connectivity. Although it
is desirable to place workloads on adjacent GPUs for faster
communication, some of them may already be occupied.
Therefore, we would be forced to place the workloads to
non-adjacent GPUs, which can add to the communication
overhead. We call this problem fragmentation. Hence Job 4
running on GPUs 0 and 7 suffers from this communication
overhead.

1. without a direct high-bandwidth communication link between
them

2. which is the current standard policy in NVIDIA Docker to allocate
GPUs in cloud environments
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(a) GPUs 0 and 7 use PCle since
there is no direct NVLink

Fig. 1: NVIDIA DGX-1 topology

(b) WOTIR establishes NVLink
route using route-GPUs.

Fig. 2: Placement scenario
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Fig. 3: Placement effects in GPU-to-GPU communication

1.2.1

The effect on the execution time of a non-optimal placement
can be seen in Figure 3(a). This figure shows execution times
normalized to NVLink, ie. an optimal placement using
GPUs 0 and 1. We observe the execution time using PCle
(GPUs 0 and 7) to be as much as 2x compared to NVLink.
To further demonstrate the performance gap between PCle
and NVLink, we present the bandwidth and latency of
the memory copy operation in Figures 3(b) and 3(c). The
memory copy is performed on contiguous data allocations
with sizes ranging from 1 KB to 1 GB. The bandwidth of the
memory copy operation saturates NVLink at a little over 22
GB/s and PCle at 9 GB/s.

Characterizing effect of poor placement

2 WOTIR

In order to alleviate the degraded network performance
due to poor workload placement within a single node, we
propose Workload Optimization Through Inter-GPU Re-
routing (WOTIR). In this technique, we augment NCCL to
use two-hop NVLink-based routing to circumvent PCle bot-
tlenecks, thereby improving the overall performance. This
work courrently focuses on tolerating GPU fragmentation
within a server node. We shall leave the study of cluster-
level GPU fragmentation for future work.

2.1 NCCL

NCCL implements various collective communication pat-
terns using coordinated primitives. These primitives operate
on data in the send/receive buffers of the GPU, as well as
data in the GPU’s memory. The following primitives are
used in NCCL— Copy: Copy the data in receive buffer to
GPU’s memory or from GPU’s memory to send buffer. Dou-
ble Copy: Copy the data in receive buffer to GPU’s memory
and send another copy to the next GPU by copying on to

send buffer. Reduce: Perform an arithmetic or logical reduce
operation on data in the receive buffer and a location in GPU
memory, and copy the final result in another location in the
GPU memory. Reduce-Copy: Perform arithmetic or logical
reduce operation on data in receive buffer and location in
GPU memory and place one copy at a location in its GPU
memory and place the second copy onto the send buffer so
the data is available to the next GPU.

To facilitate communication, NCCL organizes partici-
pating GPUs into rings. During the setup of these rings,
communication channels (PCle or NVLink) are enabled as
shown in Figure 2b. These channels assist data movement
among participating GPUs through primitive operations.

2.2 NVLink Routing

In WOTIR, we implemented a route-GPU to transport data
without using PCle. During initialization, we perform a
static lookup of the topology matrix to determine the ideal
route for GPUs without a direct NVLink connection. Be-
tween any two non-NVLink connected GPUs, there exist
two possible router GPUs. For example, between GPU 2
and 7, possible routing GPU candidates are 3 and 6. In
our current implementation, we naively select the GPU that
would complete a NVLink-only ring.

After identifying a GPU as a route-GPU, we launch
a route kernel on a single warp to facilitate the data
movement. This kernel performs a new primitive called
forward. In this primitive, data is directly transferred from
the receive buffer to the send buffer. Unlike existing NCCL
primitives, the forward primitive does not require the route
GPU to have data buffers in the GPU’s memory, only the
send/receive buffer of the NCCL communication rings. In
order to synchronize the coordination of data transfers in
the collective operation, the routing GPU will also have to
insert itself into the flagging mechanism that currently exist
in NCCL rings.



The route kernel persists until the job is complete. Since
WOTIR maintains NCCL's APIs, no change is required by
the application to benefit from NVLink routing.

To illustrate the functionality of WOTIR we present the
following illustration. For example, if GPUs 0 & 7 were
assigned for the application as depicted in Figure 2a, the
communication between 0 & 7 would take place via PCle
bus due to a lack of NVLink connection between them.
However, with WOTIR, GPUs 3 & 4 are assigned as route-
GPUs as shown in Figure 2b, and data is forwarded through
NVLink, eliminating the need for PCle.

3 EVALUATION

We perform our evaluation on NVIDIA DGX-1 V-100 system
with 8 V-100 GPUs with global memory of 16 GB each. We
evaluate our work at two levels: memory copy performance,
and execution time improvement.

3.1 Memory Copy Performance

To demonstrate the benefit of WOTIR, we repeat the mem-
ory copy experiment leveraging our framework, and present
the results in Figure 4. This figure shows the latency
and bandwidth transferring data between 2 GPUs using
NVLink, PCle, and WOTIR. The peak bandwidth achieved
in WOTIR is nearly 18 GB/s which is 2x peak bandwidth
achievable in the same combination of GPUs (0 & 7) with
PClIe. WOTIR does however exhibits poor bandwidth uti-
lization for smaller data transfer sizes due to NVLink over-
heads, a phenomenon showcased in [9]. This degradation
could be avoided by extending WOTIR to employ an
adaptive communication strategy to ensure performance to
be at least equal to PCle but not worse.

3.2 Machine Learning Workloads

One prominent use of multi-GPU environments is Machine
Learning (ML). Several ML frameworks have been designed
to leverage multiple GPUs including Caffe, TensorFlow, and
PyTorch. We demonstrate WOTIR using Caffe, an open-
source deep learning framework which can be accelerated
with GPUs. We train 4 ML models—AlexNet [10], VGG-16
[11], ResNet-50 [12], and GoogleNet [13] since these models
are some of the most heavily used in deep learning. We mea-
sure the execution time of training for max_iterations=10,000
on GPU combinations with NVLink, PCle, and WOTIR.

Figures 5 and 6 showcase execution times compared to
PCle and NVLink respectively. In Figure 5, we see that
WOTIR reduced the execution time by 34% in VGG-16
compared to PCle. It is also noteworthy that in AlexNet,
WOTIR performs better than NVLink. While the device-
to-device communication is large enough to utilize the full
bandwidth enable by WOTIR, the majority of the communi-
cation is host-to-device. This is an artifact of AlexNet's inter-
layer communication prevalent during training. By using
two GPUs managed by two separate CPUs, we effectively
parallelize the host-to-device communication.

In Figure 6, we observe an increase in execution time
due to PCle overheads. The increase is around 10% for
AlexNet and GoogleNet, whereas in VGG-16 and ResNet-
50, the PCle overheads increase the execution times up to
120%. Hence we see that VGG-16 and Resnet-50 are the
biggest beneficiaries of WOTIR in our evaluation.

3.3

To analyze the interference of the routing operation on
workloads running on the router GPU, we use Babel-
Stream [14] to stress GPU memory bandwidth while per-
forming a multiple memory copies of 1 KB to 1 GB. We ran
1000 iterations of BabelStream to account for experimental
variations and present the measured distribution in Table 1.
Each timing represents one iteration of BabelStream which
stresses the memory bandwidth by performing a copy op-
eration of 16 GB to the global device memory. We observed
that for the majority of the case, memory bandwidth in-
terference on the route GPU is minimal. We only observe
interference for a minority of copies at the tail. Further work
to investigate how to reduce routing operation overhead is
warranted. Overall, we observed negligible computational
overhead because the routing operation only requires one
warp out of the entire GPU.

Interference on route-GPU

TABLE 1: Distribution of BabelStream turnaround time ob-
served during 1000 iterations of Interference Analysis

Min | 25th% [ Median | 75th% | 95th% Max

State (ms) (ms) (ms) (ms) (ms) (ms)
w/o Routing | 2.033 | 2.034 2.035 2.036 2.040 3.140
w/ Routing | 2.034 | 2.035 2.036 2.053 5.674 | 11.459

4 RELATED WORKS

Multi-GPU clusters are increasingly being used for many
large-scale applications at a rapid rate, including deep
learning and high-performance computing [9], [15]. Re-
cently there have been novel attempts to improve the work-
load placement and inter-GPU communication and network
topology.

[16] propose Blink, a set of tree-based broadcast collec-
tive communication primitives for multiple GPUs. [17] have
addressed the effect of the topology of GPU networks within
a node on the performance, and propose a topology-aware
GPU assignment to MPI tasks to improve the communica-
tion and performance. [18] present ADAPT, an Open MPI-
based collective communication framework which uses a
topology-aware communication tree to improve collective
operations and maximize the number of communications
across the systems at any time. [19] introduce Gandiva,
a cluster-scheduling framework for deep learning across
multiple GPU clusters. However, the problem of slower
PClIe communication remains in these works, which can ex-
acerbate the performance. Our paper addresses and resolves
this issue using router GPUs to forward data among the
devices.

Gandiva also proposed migration of jobs to GPUs that
are freed while the job is running. Since the scheduler
constantly checks on GPUs to be freed, the communication
problem persists until the job is potentially migrated. More-
over, as mentioned in [20], [21], [22], preemption and migra-
tion of GPU kernels have a significant cost. Furthermore,
migration policies require GPUs to be more dependent
on CPUs to constantly monitor the availability of a better
allocation for the running jobs. In contrast, our proposed
technique has the potential to provide near-optimal com-
munication performance without the need for migration or
preemption.
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Fig. 5: Execution time improvement in Caffe of
WOTIR compared to PCle for 3 GPUs
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5 CONCLUSION

In this paper, we proposed WOTIR, a set of collective
communication primitives designed to transfer data among
the GPUs in a multi-GPU system through the use of router-
GPUs. WOTIR uses NVLinks to forward the data traffic
between communicating GPUs that would otherwise only
communicate through the PCle bus due to inefficient GPU
mapping. We have tested this method on a variety of Caffe
ML models, achieving execution time reduction of up to
34% compared to PCle.
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